scribed flow method<sup>1</sup> and low conversion to products.

Alkylborane Systems.—The four isomeric trimethylamine-butylboranes were examined in their reaction with I. The iso- and *n*-butyl systems were too slow to measure at 29.6° and rate data obtained at 49.8 and  $40.1^{\circ}$  were employed to estimate their rates<sup>3</sup> at 29.6° (see Table I). In all of these systems, with the single exception of t-butyl, the over-all rate expression was composed of first- and second-order kinetic terms. The *t*-butyl system gave only first-order kinetics at 29.6°. This is not surprising in view of the fact that the reaction site is analogous to that present in the neopentyl carbon system which does not enter into bimolecular nucleophilic displacement reactions.

The sec-butyl system presents the highest bimolecular reactivity in the butyl series. This probably reflects a large internal steric compression in a system which is not seriously encumbered toward bimolecular attack by a nucleophile. As in the case of triethylamine-borane,<sup>4</sup> the sec-butyl system was labeled at boron with deuterium<sup>5</sup> and the resulting substrate was examined kinetically. As previous work would suggest,6 the second-order kinetic term remained unchanged while the first-order term gave rise to a  $k_{\rm H}/k_{\rm D}$ of 1.29. These data further support the idea that the first-order term represents a dissociative process and that the second-order term represents an SN2 process. Further work is in progress which will deal with possible  $\beta$ -deuterium isotope effects.

Arylborane Systems.—The reactions of phenyl, p-tolyl, p-bromophenyl, p-anisyl, o-tolyl, and mesityl (trimethylamine)boranes with I were studied at  $30^{\circ}$ . As seen in Table I, the mesityl and p-anisyl systems produced rate expressions which contained a predominant second-order term and a small first-order term. The other compounds studied in this series most probably have smaller first-order terms in their rate expressions which lie within the region of experimental error. The effect of *para* substituents upon the rates of the second-order reactions was surprisingly small and suggests transition states of low polarity. The most striking result pertained to the effect of o-methyl substituents upon rate. Thus, the o-tolyl and mesityl systems were approximately 4.2 and 47 times, respectively, as reactive as the phenyl system. Such substituent effects on bimolecular displacement reactions have been noted before7 in similar benzyl systems and ascribed to the operation of London dispersion forces. The observation of first-order terms in the rate expressions of the *p*-anisyl and mesityl systems might be attributed to enhanced electronic stabilization of the borane intermediate and to steric acceleration of dissociation, respectively.

Further work is in progress and will be reported at a later date.

(3) Approximate activation parameters for these two systems are: nbutyl, first-order term,  $\Delta H^{*}_{1} = 30$  kcal./mole,  $\Delta S^{*}_{1} = 38$  e.u.; second-order term,  $\Delta H^{*_2} = 22$  kcal./mole,  $\Delta S^{*_2} = 0$  e.u.; isobutyl, first-order term,  $H_1 =$ 32 kcal./mole,  $\Delta S_{1}^{*} = 18$  e.u., second-order term,  $\Delta H_{2}^{*} = 26$  kcal./mole,  $\Delta S^{*}_{2} = 2 \text{ e.u.}$ 

(4) M. F. Hawthorne and W. L. Budde, J. Am. Chem. Soc., 86, 5337 (1964). (5) The deuterium compound was prepared by lithium aluminum deu-

teride reduction of the corresponding boroxine. See ref. 1.

(6) See A. Streitwieser, Jr., Supplement, "Solvolytic Displacement Reac-tions," McGraw-Hill Book Company, Inc., New York, N. Y., 1962, for collected examples

(7) J. F. Bunnett and J. D. Reinheimer, J. Am. Chem. Soc., 84, 3284 (1962).

Acknowledgment.—The authors wish to acknowledge the generous support of this investigation by the National Science Foundation under Grant GP-69.

(8) Alfred P. Sloan Research Fellow.

| Department of Chemistry      | M. FREDERICK HAWTHORNE <sup>8</sup> |
|------------------------------|-------------------------------------|
| THE UNIVERSITY OF CALIFORNIA | William L. Budde                    |
| RIVERSIDE, CALIFORNIA        | DONALD WALMSLEY                     |
| BEORIUPP SEPTEMBER 10, 1064  |                                     |

Received September 10, 1964

## A Mechanism Study of $B_{10}H_{10}^{-2}$ Formation

Sir:

The preferred synthetic route to  $B_{10}H_{10}^{-2}$  involves the reaction of  $B_{10}H_{12}(ligand)_2$  compounds with bases such as triethylamine,<sup>1</sup> triphenylphosphorane,<sup>2</sup> and

$$B_{10}H_{12}(ligand)_2 + 2 \text{ base} \longrightarrow$$
  
2H<sup>+</sup> base +  $B_{10}H_{10}^{-2} + 2 \text{ ligand}$  (1)

ammonia.<sup>3</sup> Vields of  $B_{10}H_{10}^{-2}$  as high as 90% may be obtained on a large preparative scale accompanied by variable amounts of displacement products, B10H12- $(base)_2$ , and less well-defined materials.

We have initiated a kinetic study aimed at elucidating the mechanism of B<sub>10</sub>H<sub>10</sub><sup>-2</sup> formation. Previous deuterium tracer work4 indicated the course of the over-all geometrical change which accompanies the reaction.

A reliable and very sensitive spectrophotometric method was devised<sup>5</sup> for the determination of  $B_{10}H_{10}^{-2}$ . With this method, and where necessary by the use of initial reaction rates, it was possible to study the kinetics of B<sub>10</sub>H<sub>10</sub><sup>-2</sup> formation essentially uncomplicated by competitive reactions.

The reaction of  $B_{10}H_{12}(NEt_3)_2$  (I) with triethylamine (II) was examined in acetonitrile solution at  $100^{\circ}$ . This system employed an amine base identical with the attached ligand. Thus, with reference to eq. 1, the amine concentration remained constant throughout each kinetic run. Reactions were followed to at least 80% completion. The observed kinetics were first order in I and zero order in II over a wide range of initial concentration ratios and with a first-order rate constant of 5.4  $\times$  10<sup>-5</sup> sec.<sup>-1</sup>. These results indicated that the external base molecule was not incorporated in the rate-determining transition state.

The reaction of  $B_{10}H_{12}(SMe_2)_2$  (III) with II was examined at 20.0° in toluene solution. A preparativescale experiment carried out under these conditions for 4.5 days with 0.02 M III and 0.15 M II produced  $70\% B_{10}H_{10}^{-2}$ , 15% I, and 15% unidentified oil. In another series of experiments, the infinite time yields of B<sub>10</sub>H<sub>10</sub><sup>-2</sup> were determined under kinetic conditions with 0.01 M III and varied initial concentrations of II. Maximum yields (80%) of  $B_{10}H_{10}^{-2}$  were obtained at 0.05 M, or higher, initial [II]. Below 0.05 M

<sup>(1)</sup> A. R. Pitochelli and M. F. Hawthorne, J. Am. Chem. Soc., 81, 5519 (1959).

<sup>(2)</sup> Unpublished results.

<sup>(3)</sup> E. L. Muetterties, J. H. Balthis, Y. T. Chia, W. H. Knoth, and H. C. Miller, Inorg. Chem., 3, 444 (1964).

<sup>(4)</sup> J. A. Dupont, M. F. Hawthorne, A. R. Pitochelli, and R. Ettinger, J. Am. Chem. Soc., 84, 1057 (1962).

 $<sup>(\</sup>mathbf{5})$  This method makes use of the quantitative formation of a red azo coupling product (  $\epsilon$  19,400,  $\lambda_{max}$  520 mµ) which is formed from a large excess of phenyldiazonium ion and  $B_{10}H_{10}$ <sup>-2</sup> in acetonitrile acidified with trifluoroacetic acid. The nature of this coupling product is presented elsewhere: M. F. Hawthorne and F. P. Olsen, J. Am. Chem. Soc., 86, 4219 (1964).

initial [II], yields decreased with decreasing initial [II] to a value of 50% at 0.01~M II.

The initial-rate method was employed and reactions were followed to approximately 5% completion. A series of rate determinations carried out at constant II concentration and varying III concentrations proved this reaction to be first order in III. A plot of pseudofirst-order rate constant vs. initial II concentration indicated that the reaction became essentially zero order in II at high II concentrations. The addition of dimethyl sulfide (IV) depressed the reaction rate at all concentrations of II and III. Three series of kinetic runs were carried out at different [IV], in which [II] was varied within each series and [III] was held constant. Plots of  $[III]/(d[B_{10}H_{10}^{-2}]/dt)$  vs.  $[II]^{-1}$  for each [IV]were linear and gave a common intercept of  $2.1 \times 10^{-4}$ sec. at  $[II]^{-1} = 0$ . The slopes (z) of each of these plots were plotted vs. [IV] present in each series of rate runs and a straight line described by the equation, z = 3.45 $\times 10^{4}$ [Me<sub>2</sub>S] + 140 sec. mole 1.<sup>-1</sup> was obtained. The intercept of the latter line was identical with the slope obtained in the first series of plots with no added IV. This intercept requires the operation of a process  $(k_4)$ which removes the B<sub>10</sub>H<sub>12</sub>(ligand) intermediate from the system without producing B<sub>10</sub>H<sub>10</sub><sup>-2</sup> or regenerating III. The results obtained with I and III are consistent with the following rationale<sup>6</sup> in which the  $k_1$  process

$$B_{10}H_{12}(ligand)_2 \xrightarrow{k_{-1}} B_{10}H_{12}(ligand) + ligand$$

 $\begin{array}{l} B_{10}H_{12}(\text{ligand}) + \text{NEt}_{\$} \xrightarrow{k_{\$}} B_{10}H_{11}^{-} + H\overset{+}{\text{NEt}}_{\$} + \text{ligand} \\ \\ B_{10}H_{11}^{-} + \text{NEt}_{\$} \xrightarrow{\text{very fast}} B_{10}H_{10}^{-2} + H\overset{+}{\text{NEt}}_{\$} \\ \\ B_{10}H_{12}(\text{ligand}) + \text{NEt}_{\$} \xrightarrow{k_{\$}} B_{10}H_{12}(\text{SMe}_2)(\text{NEt}_{\$}) \end{array}$ 

 $B_{10}H_{12}(ligand) \xrightarrow{k_4}$  unidentified products

may become rate determining at high II concentrations.

It seems probable that the  $k_2$  process involves proton abstraction by II with or without the concerted ejection of the second ligand molecule.

The proposed  $B_{10}H_{12}(ligand)$  intermediate formally resembles  $B_{10}H_{13}^-$ . That the  $B_{10}H_{12}(SMe_2)$  (V) reported by Knoth and Muetterties<sup>7</sup> is not the intermediate involved in  $B_{10}H_{10}^{-2}$  formation was shown by the fact that authentic V formed  $B_{10}H_{10}^{-2}$  more than  $10^3$  times *slower* than III under the same conditions. As suggested by Lipscomb,<sup>8</sup> two reasonable structures exist for  $B_{10}H_{13}^-$  and two tautomeric  $B_{10}H_{12}(ligand)$ structures may well exist. The formation of  $B_{10}H_{10}^{-2}$ from V may involve the slow conversion of V to the reactive isomer. Conversely, the  $k_4$  process may involve the moderately rapid conversion of the reactive intermediate to V.

Further work is in progress and will be reported at a later date.

(6) Where L = ligand and d[BieHiiL]/dt = 0, d[BieHiie^2]/dt = k\_1 · [BieHii2L\_2] {k\_2[Et\_3N]/(k\_1 + k\_3)[Et\_3N] + k\_{-1}[L] + k\_4} ] or [BieHii2L\_2]/(d[BieHiie^2]/dt) = (1/[Et\_3N]) {(k\_{-1}[L] + k\_4)/k\_1k\_3} + (k\_2 + k\_3)/k\_1k\_3. In the first series of plots, the slopes = (k\_{-1}[L] + k\_4)/k\_1k\_3 sec. molel.<sup>-1</sup>, and the intercepts = (k\_2 + k\_3)/k\_1k\_3 sec. In the second plot, the slope = k\_{-1}/k\_1k\_3 sec., and the intercept = k\_4/k\_1k\_2 sec. molel.<sup>-1</sup>. Elimination of the k\_1k\_3 term gives (k\_2 + k\_3)/k\_{-1} = 0.44 \pm 0.02 and (rate of k\_4 process)/(rate of k\_{-1} process) = k\_4/(k\_{-1}[L]) = 2.5 \pm 0.5 \times 10^{-4}/[L].

(7) W. H. Knoth and E. L. Muetterties, J. Inorg. Nucl. Chem., 20, 66 (1961).

(8) W. N. Lipscomb, Advan. Inorg. Chem. Radiochem., 1, 117 (1959).

(9) Alfred P. Sloan Research Fellow.

Acknowledgment.—The authors wish to thank the Advanced Research Projects Agency through the Army Research Office (Durham) for generous support of this work.

DEPARTMENT OF CHEMISTRY THE UNIVERSITY OF CALIFORNIA RIVERSIDE, CALIFORNIA M. FREDERICK HAWTHORNE<sup>9</sup> RICHARD L. PILLING RUSSELL N. GRIMES

Received September 30, 1964

## A Crystalline Alkoxydiarylalkylidenephosphorane from the Reaction of Ethyl Diphenylphosphinite with an $\alpha$ - $\beta$ -Unsaturated Ketone<sup>1</sup>

## Sir:

Harvey and Jensen<sup>2</sup> ascribed the cyclic dialkoxydiarylalkylphosphorane structure<sup>3</sup> I to the adduct, "m.p. 116–118°," which is formed from ethyl diphenylphosphinite and trans-dibenzoylethylene in an ether solution.<sup>4</sup> We should like to report that this substance is actually the alkoxydiarylalkylidenephosphorane<sup>3</sup> II, a moderately stable phosphinitemethylene.



Equimolar amounts of ethyl diphenylphosphinite<sup>5</sup> and *trans*-dibenzoylethylene were allowed to react at 20° in anhydrous 1,2-dimethoxyethane (*ca.* 1.6 *M*). The infrared spectrum of the resulting clear, red solution after 3 hr. showed that the reaction was nearly complete. The 1:1 adduct crystallized and was filtered after 2 days; yield, 42%; m.p. 118–120° (crude). Recrystallization from benzene–hexane gave II, m.p. 122–123°. Spectral characteristics are: infrared bands, (CH<sub>2</sub>Cl<sub>2</sub>,  $\mu$ ): 5.97 (strong C=O) and 6.65 (broad and strong "enolate" C=O<sup>6</sup>);  $\delta_{P^{21}} =$ -54.2 p.p.m.<sup>7</sup> (CH<sub>2</sub>Cl<sub>2</sub>); H<sup>1</sup> n.m.r. (CDCl<sub>3</sub>; p.p.m. in the  $\tau$ -scale): multiplet at 2.65 (aromatic), 2H<sup>1</sup>

(1) This investigation was supported by the National Science Foundation (G 19509) and by Public Health Service Research Grant No. CA-04769-05 from the National Cancer Institute.

(2) R. G. Harvey and E. V. Jensen, Tetrahedron Letters, No. 26, 1801 (1963).

(3) Structure I: 2-ethoxy-2,2-diphenyl-3-benzoyl-5-phenyl- $\Delta^4$ -oxaphospholene; structure II: ethoxyldiphenyl- (benzoyl-, phenacyl-) methylenephosphorane.

(4) For other reactions of  $\alpha$ - $\beta$ -unsaturated carbonyl compounds with trivalent phosphorus compounds: (a) V. A. Kukhtin and K. M. Orekhova, J. Gen. Chem. USSR., **30**, 1539 (1960); (b) G. Kamai and A. V. Kukhtin, *ibid.*, **31**, 1621 (1961), and earlier papers; (c) V. A. Ginsburg and A. Ya. Yakubovich, J. Gen. Chem. USSR, **30**, 3944 (1960); (d) E. R. DeSombre, R. G. Harvey, and E. V. Jensen, Abstracts, Division of Organic Chemistry, 146th National Meeting of the American Chemical Society, Denver, Colo., Jan., 1964, p. 21C.

(5) R. Rabinowitz and J. Pellon, J. Org. Chem., 26, 4624 (1961).

(6) Triphenylbenzoylmethylenephosphorane [F. Ramirez and S. Dershowitz, J. Org. Chem., 22, 41 (1957)] has an "enolate" carbonyl at 6.63  $\mu$ . The P<sup>11</sup> n.m.r. shift (vs. 85% H<sub>3</sub>PO<sub>4</sub>) is -16.7 p.p.m. (CHCl<sub>3</sub>). Its hydrochloride has -20.7 p.p.m. (CHCl<sub>3</sub>). A. J. Speziale and K. W. Ratts [J. Am. Chem. Soc., 85, 2790 (1963)], however, reported -21.6 p.p.m. for the former ylid, and -18.9 p.p.m. for the latter hydrochloride (both in CHCl<sub>3</sub>). (7) All P<sup>11</sup> n.m.r. spectra were determined at 40.5 Mc./sec. and are ex-

(7) All P^1 n.m.r. spectra were determined at 40.5 Mc./sec. and are expressed in p.p.m. vs.  $85\%~H_8PO_4.$